Effect of electron-phonon interaction on spectroscopies in graphene

نویسندگان

  • J. P. Carbotte
  • E. J. Nicol
  • S. G. Sharapov
چکیده

We calculate the effect of the electron-phonon interaction on the electronic density of states DOS , the quasiparticle properties, and on the optical conductivity of graphene. In metals with DOS constant on the scale of phonon energies, the electron-phonon renormalizations drop out of the dressed DOS, however, due to the Dirac nature of the electron dynamics in graphene, the band DOS is linear in energy and phonon structures remain, which can be emphasized by taking an energy derivative. There is a shift in the chemical potential and in the position in energy of the Dirac point. Also, the DOS can be changed from a linear dependence out of value zero at the Dirac point to quadratic out of a finite value. The optical scattering rate 1 / sets the energy scale for the rise of the optical conductivity from its universal dc value 4e2 / h expected in the simplest theory when chemical potential and temperature are both 1 /2 to its universal ac background value 0 = e2 /2h . As in ordinary metals the dc conductivity remains unrenormalized while its ac value is changed. The optical spectral weight under the intraband Drude is reduced by a mass-renormalization factor as is the effective scattering rate. Optical weight is transferred to an Holstein phonon-assisted side band. Due to Pauli blocking the interband transitions are sharply suppressed, but also nearly constant, below twice the value of renormalized chemical potential and also exhibit a phonon-assisted contribution. The universal background conductivity is reduced below 0 at large energies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconventional plasmon-phonon coupling in graphene

We predict the existence of coupled plasmon-phonon excitations in graphene by using the self-consistent linear response formalism. The unique electron-phonon interaction in graphene leads to unconventional mixing of plasmon and optical phonon polarizations. We find that longitudinal plasmons couple exclusively to transverse optical phonons, whereas graphene’s transverse plasmons couple only to ...

متن کامل

Phonon-induced many-body renormalization of the electronic properties of graphene.

We develop a theory for the electron-phonon interaction effects on the electronic properties of graphene. We analytically calculate the electron self-energy, spectral function, and the band velocity renormalization due to phonon-mediated electron-electron interaction, finding that phonon-mediated electron-electron coupling has a large effect on the graphene band structure renormalization. Our a...

متن کامل

Charge transfer equilibria in ambient-exposed epitaxial graphene on (000) 6H-SiC

Related Articles Directional quantum transport in graphyne p-n junction J. Appl. Phys. 113, 073710 (2013) Charge transport in lightly reduced graphene oxide: A transport energy perspective J. Appl. Phys. 113, 063710 (2013) Effect of chiral property on hot phonon distribution and energy loss rate due to surface polar phonons in a bilayer graphene J. Appl. Phys. 113, 063705 (2013) Annealing effec...

متن کامل

Bias-Induced Optical Absorption of Current Carrying Two-Orbital Quantum Dot with Strong Electron-Phonon Interaction (Polaron Regime)

The one photon absorption (OPA) cross section of a current carrying two-orbital quantum dot (QD) with strong electron-phonon interaction (polaron regime) is considered. Using the self-consistent non-equilibrium Hartree-Fock (HF) approximation, we determine the dependence of OPA cross section on the applied bias voltage, the strength of effective electron-electron interaction, and level spacing ...

متن کامل

Full-band and atomistic study of electron-phonon interaction in graphene nanoribbons

Transmission function through metallic armchair-edge graphene nanoribbons is calculated within non-equilibrium Green’s function method including full-band electron–opticalphonon interaction. Structures appear in transmission function, which are originated in both zone-center and zone-edge optical-phonon scattering.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010